3.9.8 \(\int \csc (c+d x) \sec ^4(c+d x) (a+a \sin (c+d x))^2 \, dx\) [808]

3.9.8.1 Optimal result
3.9.8.2 Mathematica [A] (verified)
3.9.8.3 Rubi [A] (verified)
3.9.8.4 Maple [A] (verified)
3.9.8.5 Fricas [B] (verification not implemented)
3.9.8.6 Sympy [F(-1)]
3.9.8.7 Maxima [A] (verification not implemented)
3.9.8.8 Giac [A] (verification not implemented)
3.9.8.9 Mupad [B] (verification not implemented)

3.9.8.1 Optimal result

Integrand size = 27, antiderivative size = 73 \[ \int \csc (c+d x) \sec ^4(c+d x) (a+a \sin (c+d x))^2 \, dx=-\frac {a^2 \text {arctanh}(\cos (c+d x))}{d}+\frac {4 a^2 \cos (c+d x)}{3 d (1-\sin (c+d x))}+\frac {a^4 \cos (c+d x)}{3 d (a-a \sin (c+d x))^2} \]

output
-a^2*arctanh(cos(d*x+c))/d+4/3*a^2*cos(d*x+c)/d/(1-sin(d*x+c))+1/3*a^4*cos 
(d*x+c)/d/(a-a*sin(d*x+c))^2
 
3.9.8.2 Mathematica [A] (verified)

Time = 1.20 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.45 \[ \int \csc (c+d x) \sec ^4(c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {a^2 (1+\sin (c+d x))^2 \left (-6 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )+6 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+6 \sec (c+d x)+4 \sec ^3(c+d x)+12 \tan (c+d x)+4 \tan ^3(c+d x)\right )}{6 d \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^4} \]

input
Integrate[Csc[c + d*x]*Sec[c + d*x]^4*(a + a*Sin[c + d*x])^2,x]
 
output
(a^2*(1 + Sin[c + d*x])^2*(-6*Log[Cos[(c + d*x)/2]] + 6*Log[Sin[(c + d*x)/ 
2]] + 6*Sec[c + d*x] + 4*Sec[c + d*x]^3 + 12*Tan[c + d*x] + 4*Tan[c + d*x] 
^3))/(6*d*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^4)
 
3.9.8.3 Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 74, normalized size of antiderivative = 1.01, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 3348, 3042, 3245, 3042, 3457, 27, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \csc (c+d x) \sec ^4(c+d x) (a \sin (c+d x)+a)^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a \sin (c+d x)+a)^2}{\sin (c+d x) \cos (c+d x)^4}dx\)

\(\Big \downarrow \) 3348

\(\displaystyle a^4 \int \frac {\csc (c+d x)}{(a-a \sin (c+d x))^2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a^4 \int \frac {1}{\sin (c+d x) (a-a \sin (c+d x))^2}dx\)

\(\Big \downarrow \) 3245

\(\displaystyle a^4 \left (\frac {\int \frac {\csc (c+d x) (\sin (c+d x) a+3 a)}{a-a \sin (c+d x)}dx}{3 a^2}+\frac {\cos (c+d x)}{3 d (a-a \sin (c+d x))^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a^4 \left (\frac {\int \frac {\sin (c+d x) a+3 a}{\sin (c+d x) (a-a \sin (c+d x))}dx}{3 a^2}+\frac {\cos (c+d x)}{3 d (a-a \sin (c+d x))^2}\right )\)

\(\Big \downarrow \) 3457

\(\displaystyle a^4 \left (\frac {\frac {\int 3 a^2 \csc (c+d x)dx}{a^2}+\frac {4 \cos (c+d x)}{d (1-\sin (c+d x))}}{3 a^2}+\frac {\cos (c+d x)}{3 d (a-a \sin (c+d x))^2}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle a^4 \left (\frac {3 \int \csc (c+d x)dx+\frac {4 \cos (c+d x)}{d (1-\sin (c+d x))}}{3 a^2}+\frac {\cos (c+d x)}{3 d (a-a \sin (c+d x))^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a^4 \left (\frac {3 \int \csc (c+d x)dx+\frac {4 \cos (c+d x)}{d (1-\sin (c+d x))}}{3 a^2}+\frac {\cos (c+d x)}{3 d (a-a \sin (c+d x))^2}\right )\)

\(\Big \downarrow \) 4257

\(\displaystyle a^4 \left (\frac {\frac {4 \cos (c+d x)}{d (1-\sin (c+d x))}-\frac {3 \text {arctanh}(\cos (c+d x))}{d}}{3 a^2}+\frac {\cos (c+d x)}{3 d (a-a \sin (c+d x))^2}\right )\)

input
Int[Csc[c + d*x]*Sec[c + d*x]^4*(a + a*Sin[c + d*x])^2,x]
 
output
a^4*(((-3*ArcTanh[Cos[c + d*x]])/d + (4*Cos[c + d*x])/(d*(1 - Sin[c + d*x] 
)))/(3*a^2) + Cos[c + d*x]/(3*d*(a - a*Sin[c + d*x])^2))
 

3.9.8.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3245
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/( 
a*(2*m + 1)*(b*c - a*d))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + 
f*x])^n*Simp[b*c*(m + 1) - a*d*(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x] 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ 
[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (Intege 
rsQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3348
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) 
 + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[a^(2*m)   Int[(d* 
Sin[e + f*x])^n/(a - b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, n}, 
 x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p] && EqQ[2*m + p, 0]
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
3.9.8.4 Maple [A] (verified)

Time = 0.26 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.97

method result size
parallelrisch \(\frac {\left (\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-4 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {10}{3}\right ) a^{2}}{d \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}\) \(71\)
derivativedivides \(\frac {\frac {a^{2}}{3 \cos \left (d x +c \right )^{3}}-2 a^{2} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+a^{2} \left (\frac {1}{3 \cos \left (d x +c \right )^{3}}+\frac {1}{\cos \left (d x +c \right )}+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )}{d}\) \(81\)
default \(\frac {\frac {a^{2}}{3 \cos \left (d x +c \right )^{3}}-2 a^{2} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+a^{2} \left (\frac {1}{3 \cos \left (d x +c \right )^{3}}+\frac {1}{\cos \left (d x +c \right )}+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )}{d}\) \(81\)
risch \(\frac {2 a^{2} \left (-9 i {\mathrm e}^{i \left (d x +c \right )}+3 \,{\mathrm e}^{2 i \left (d x +c \right )}-4\right )}{3 d \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{3}}+\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d}-\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d}\) \(88\)
norman \(\frac {-\frac {10 a^{2}}{3 d}-\frac {4 a^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}-\frac {16 a^{2} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}-\frac {8 a^{2} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}-\frac {16 a^{2} \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}-\frac {4 a^{2} \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {4 a^{2} \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}-\frac {8 a^{2} \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {6 a^{2} \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {8 a^{2} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}+\frac {a^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}\) \(228\)

input
int(csc(d*x+c)*sec(d*x+c)^4*(a+a*sin(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
((tan(1/2*d*x+1/2*c)-1)^3*ln(tan(1/2*d*x+1/2*c))-4*tan(1/2*d*x+1/2*c)^2+6* 
tan(1/2*d*x+1/2*c)-10/3)*a^2/d/(tan(1/2*d*x+1/2*c)-1)^3
 
3.9.8.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 231 vs. \(2 (68) = 136\).

Time = 0.28 (sec) , antiderivative size = 231, normalized size of antiderivative = 3.16 \[ \int \csc (c+d x) \sec ^4(c+d x) (a+a \sin (c+d x))^2 \, dx=-\frac {8 \, a^{2} \cos \left (d x + c\right )^{2} + 10 \, a^{2} \cos \left (d x + c\right ) + 2 \, a^{2} + 3 \, {\left (a^{2} \cos \left (d x + c\right )^{2} - a^{2} \cos \left (d x + c\right ) - 2 \, a^{2} + {\left (a^{2} \cos \left (d x + c\right ) + 2 \, a^{2}\right )} \sin \left (d x + c\right )\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 3 \, {\left (a^{2} \cos \left (d x + c\right )^{2} - a^{2} \cos \left (d x + c\right ) - 2 \, a^{2} + {\left (a^{2} \cos \left (d x + c\right ) + 2 \, a^{2}\right )} \sin \left (d x + c\right )\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 2 \, {\left (4 \, a^{2} \cos \left (d x + c\right ) - a^{2}\right )} \sin \left (d x + c\right )}{6 \, {\left (d \cos \left (d x + c\right )^{2} - d \cos \left (d x + c\right ) + {\left (d \cos \left (d x + c\right ) + 2 \, d\right )} \sin \left (d x + c\right ) - 2 \, d\right )}} \]

input
integrate(csc(d*x+c)*sec(d*x+c)^4*(a+a*sin(d*x+c))^2,x, algorithm="fricas" 
)
 
output
-1/6*(8*a^2*cos(d*x + c)^2 + 10*a^2*cos(d*x + c) + 2*a^2 + 3*(a^2*cos(d*x 
+ c)^2 - a^2*cos(d*x + c) - 2*a^2 + (a^2*cos(d*x + c) + 2*a^2)*sin(d*x + c 
))*log(1/2*cos(d*x + c) + 1/2) - 3*(a^2*cos(d*x + c)^2 - a^2*cos(d*x + c) 
- 2*a^2 + (a^2*cos(d*x + c) + 2*a^2)*sin(d*x + c))*log(-1/2*cos(d*x + c) + 
 1/2) - 2*(4*a^2*cos(d*x + c) - a^2)*sin(d*x + c))/(d*cos(d*x + c)^2 - d*c 
os(d*x + c) + (d*cos(d*x + c) + 2*d)*sin(d*x + c) - 2*d)
 
3.9.8.6 Sympy [F(-1)]

Timed out. \[ \int \csc (c+d x) \sec ^4(c+d x) (a+a \sin (c+d x))^2 \, dx=\text {Timed out} \]

input
integrate(csc(d*x+c)*sec(d*x+c)**4*(a+a*sin(d*x+c))**2,x)
 
output
Timed out
 
3.9.8.7 Maxima [A] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 90, normalized size of antiderivative = 1.23 \[ \int \csc (c+d x) \sec ^4(c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {4 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} a^{2} + a^{2} {\left (\frac {2 \, {\left (3 \, \cos \left (d x + c\right )^{2} + 1\right )}}{\cos \left (d x + c\right )^{3}} - 3 \, \log \left (\cos \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} + \frac {2 \, a^{2}}{\cos \left (d x + c\right )^{3}}}{6 \, d} \]

input
integrate(csc(d*x+c)*sec(d*x+c)^4*(a+a*sin(d*x+c))^2,x, algorithm="maxima" 
)
 
output
1/6*(4*(tan(d*x + c)^3 + 3*tan(d*x + c))*a^2 + a^2*(2*(3*cos(d*x + c)^2 + 
1)/cos(d*x + c)^3 - 3*log(cos(d*x + c) + 1) + 3*log(cos(d*x + c) - 1)) + 2 
*a^2/cos(d*x + c)^3)/d
 
3.9.8.8 Giac [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.00 \[ \int \csc (c+d x) \sec ^4(c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {3 \, a^{2} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) - \frac {2 \, {\left (6 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 9 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 5 \, a^{2}\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}^{3}}}{3 \, d} \]

input
integrate(csc(d*x+c)*sec(d*x+c)^4*(a+a*sin(d*x+c))^2,x, algorithm="giac")
 
output
1/3*(3*a^2*log(abs(tan(1/2*d*x + 1/2*c))) - 2*(6*a^2*tan(1/2*d*x + 1/2*c)^ 
2 - 9*a^2*tan(1/2*d*x + 1/2*c) + 5*a^2)/(tan(1/2*d*x + 1/2*c) - 1)^3)/d
 
3.9.8.9 Mupad [B] (verification not implemented)

Time = 10.63 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.34 \[ \int \csc (c+d x) \sec ^4(c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {a^2\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}-\frac {4\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-6\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+\frac {10\,a^2}{3}}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3-3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )} \]

input
int((a + a*sin(c + d*x))^2/(cos(c + d*x)^4*sin(c + d*x)),x)
 
output
(a^2*log(tan(c/2 + (d*x)/2)))/d - (4*a^2*tan(c/2 + (d*x)/2)^2 + (10*a^2)/3 
 - 6*a^2*tan(c/2 + (d*x)/2))/(d*(3*tan(c/2 + (d*x)/2) - 3*tan(c/2 + (d*x)/ 
2)^2 + tan(c/2 + (d*x)/2)^3 - 1))